Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова Факультет почвоведения

УТВЕРЖДАЮ
и.о. декана П.В.Красильников /
«»20 г
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Наименование дисциплины:
Изотопные методы в почвенной микробиологии
Уровень высшего образования:
Магистратура
Направление подготовки (специальность):
06.04.02 Почвоведение
Направленность (профиль) ОПОП:
Биология почв
Форма обучения: очная
Рабочая программа рассмотрена и одобрена учебно-методической комиссией
факультета почвоведения (протокол №, дата)
факультета почвоведения (протокол №, дата)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки <u>06.04.02 «Почвоведение»</u> программы <u>магистратуры</u>.

ОС МГУ утвержден решением Ученого совета МГУ имени М.В. Ломоносова от $\underline{28}$ декабря $\underline{2020}$ года (протокол № $\underline{7}$).

- 1. Место дисциплины в структуре ОПОП: вариативная часть, по выбору.
- 2. **Входные требования для освоения дисциплины, предварительные условия:** общепрофессиональные и общенаучные дисциплины базовой части программы бакалавра по специальности «Почвоведение», в том числе «Физика», «Физическая химия», «Основы почвоведения», а также «Биохимия почвенных микроорганизмов», «Молекулярные методы в почвоведении».

3. Планируемые результаты обучения в результате освоения дисциплины, соотнесенные с требуемыми компетенциями выпускников:

Компетенции выпускников (коды)	Индикаторы (показатели) достижения компетенций	Планируемые результаты обучения по дисциплине, сопряженные с компетенциями
М-СПК-1. Способен применять на практике фундаментальные и прикладные аспекты почвенной микробиологии и зоологии, понимает современные насущные задачи и проблемы в данных	СПК-1.1. Применяет на практике фундаментальные и прикладные аспекты почвенной микробиологии и зоологии	Знать процессы трансформации соединений углерода, азота, серы и др. биологически значимых элементов почвенными микроорганизмами, животными и растениями, а также связанные с ними изотопные эффекты. Уметь использовать эти знания при решении собственных практических задач
областях	СПК-1.2. Глубоко понимает современные насущные проблемы почвенной микробиологии и зоологии и применяет их при решении профессиональных задач	Знать область применения изотопных методов для решения актуальных задач почвенной микробиологии и зоологии. Знать историю развития данных методов, а также подходы, применяемые в смежных научных направлениях: почвоведении, экологии, геологии и т.д.
М-СПК-3. Способен применять на практике знание биологической систематики организмов, особенностей онтогенеза отдельных групп почвенных организмов и	СПК-3.1. Применяет на практике знание биологической систематики организмов, особенностей онтогенеза отдельных групп почвенных организмов и условий устойчивого существования и жизнеспособности почвенных микробных популяций	Знать методы определения изотопного состава биомаркеров (фосфолипиды, ДНК, РНК, белки), уметь планировать эксперимент с внесением меченого субстрата и интерпретировать полученные результаты: выявлять и идентифицировать микроорганизмы, участвующие в поглощении и трансформации субстрата,

VOTORY		avagy appay
условий		знать ограничения
устойчивого		применимости метода.
существования и		
жизнеспособности		
почвенных		
микробных		
популяций М-СПК-5.	CHV 5.1. Happayyy	Видили базаруни марумани
М-СПК-5. Способен	СПК-5.1. Проводит	Владеть базовыми навыками
	самостоятельные	планирования экспериментов
проводить	экспериментальные исследования в	с использованием методов
самостоятельные	области почвенной микробиологии:	изотопного анализа; знать
экспериментальные	анализирует научную литературу,	принципы работы приборов
исследования в области почвенной	формулирует актуальные цели и задачи; ориентируется в	для определения изотопного
микробиологии:	современных методах почвенной	состава вещества; уметь
•	микробиологии и биохимии; несет	рассчитать величины коэффициента
анализировать	ответственность за качество работ и	* *
научную	_	фракционирования изотопов в ходе биохимической реакции,
литературу, формулировать	достоверность полученных	определять по изотопному
актуальные цели и	результатов	составу происхождение
задачи;		вещества и оценивать вклад
ориентируется в		отдельных его источников.
современных		отдельных его источников.
методах почвенной		
микробиологии и		
биохимии; несет		
ответственность за		
качество работ и		
достоверность		
полученных		
результатов		
М-СПК-6.	СПК-6.1. Использует современные	Использовать современные
Способен	компьютерные и информационные	компьютерные технологии и
применять на	технологии для решения задач по	международные базы данных
практике	идентификации микроорганизмов;	для идентификации
современные	respectively.	микроорганизмов,
компьютерные и		осуществляющих
информационные		фракционирование изотопов в
технологии для		ходе поставленных
решения задач по		экспериментов.
идентификации	СПК-6.2. Осуществляет	Владеть навыками
микроорганизмов,	статистическую обработку	самостоятельного поиска
проведения	экспериментальных данных,	научных публикаций,
статистической	использует международные базы	относящихся к решению
обработки	данных для поиска необходимой	собственной научной или
экспериментальных	научных публикаций	практической задачи и
данных и поиска	-	анализа применимости
необходимой		описанных там методов для
информации в		ее решения. Уметь оценивать
мировых базах		статистическую
данных научных		достоверность полученных
публикаций		выводов

М-СПК-7. Способен использовать профессиональные знания и практические навыки при решении практических задач по оценке качества природных объектов, разработке методов очистки и рекультивации загрязненных территорий, управлению микроорганизмами, положительно влияющими на рост растений, выявлению продуцентов физиологически активных веществ и борьбе с патогенными микроорганизмами

СПК-7.1. Применяет профессиональные знания и практические навыки при решении практических задач по оценке качества природных объектов, разработке методов очистки и рекультивации загрязненных территорий, управлению микроорганизмами, положительно влияющими на рост растений, выявлению продуцентов физиологически активных веществ и борьбе с патогенными микроорганизмами

Знать особенности изотопного состава минеральных и органических удобрений, органических и неорганических поллютантов, климатически активных газов антропогенного и природного происхождения, знать изотопные эффекты, которые наблюдаются при их микробной трансформации, поглощении или иммобилизации. Знать изотопные показатели, которые используются для оценки эффективности фотосинтеза и активности микроорганизмов в почвенном профиле и т.д. Уметь применять полученные знания при разработке и апробации методов очистки и рекультивации загрязненных территорий и при изучении баланса парниковых газов в наземных экосистемах.

- 4. **Объем дисциплины** $\underline{3}$ з.е., в том числе $\underline{36}$ академических часов на контактную работу обучающихся с преподавателем, $\underline{72}$ академических часов на самостоятельную работу обучающихся.
- 5. Формат обучения очный

6. Содержание дисциплины, структурированное по разделам и темам, с указанием отведенного на них количества академических часов, и виды учебных занятий:

		В том числе							
		Контактная работа				Самостоятельная работа обучающегося			
Наименование и		(работа во взаимодействии с преподавателем)							
паименование и краткое содержание разделов и тем дисциплины / форма текущей аттестации	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа (семинары)	Занятия семинарского типа (лабораторные)	Занятия семинарского типа (практические)	Всего	Подбор и анализ литературы	Решение расчетных задач	Всего
Раздел 1. Введение в									
изотопные методы									
Тема 1. Исторический									
очерк: открытие			_			_	_		_
изотопов и изучение их			2			2	2		2
физико-химических									
особенностей									
Тема 2. Стабильные и									
радиоактивные			2			2	4		4
изотопы,			_			_			
радиоактивный распад									
Тема 3. Аналитические									
методы определения			2			2	2	2	4
изотопного состава			_			_	_	_	
вещества									
Тема 4.			_						
Фракционирование			4			4	4	4	8
изотопов и смешивание									

ИЗОТОПОВ							
Форма текущей		<u> </u>	<u> </u>				
аттестации по разделу –							
контрольная работа							
Раздел 2. Применение							
изотопных методов для							
решения							
исследовательских							
задач							
Тема 5. Геохимия							
стабильных изотопов				4.4	20		20
биологически значимых		14		14	20	8	28
элементов							
Тема 6. Изотопный							
состав биомаркеров,							
способы связать							
таксономическую		6		6	12		12
принадлежность и							
функции							
микроорганизмов in situ							
Тема 7. Использование							
изотопных данных в							
палеоэкологических и		6		6	6	2	8
палеоклиматических							
реконструкциях							
Форма текущей							
аттестации по разделу –							
контрольная работа							
Промежуточная		Зачё	im			6	
аттестация		<i></i>	111			U	
Итого:	108						

Подробное содержание разделов и тем дисциплины:

Раздел 1. Введение в изотопные методы

Тема 1. Исторический очерк: открытие изотопов и изучение их физико-химических особенностей

Возникновение атомной теории. Работы Дж. Дальтона, открытие закона кратных соотношений в химических реакциях и введение понятия относительной атомной массы. Периодическая система Д.И. Менделеева и появление атомного номера. Эксперимент Гейгера-Марсдена и теория строения атома Э. Резерфорда. Его работы в области теории радиоактивного распада. Открытие протона и нейтрона. Открытие Ф. Содди изотопа ²²⁸Ra в продуктах радиоактивного распада тория и появление понятия «изотоп». Работы Дж. Томпсона и Ф. Астона, первое экспериментальное разделение изотопов, создание масс-спектрометрии. Вклад Ф. Астона, А. Демпстера, У. Джиока, Г. Джонстона, Г. Юри, Ф. Брикведде и Г. Мэрфи в обнаружение стабильных изотопов химических элементов. Разработка теоретических основ фракционирования изотопов в ходе химических реакций и физических процессов Дж. Бигелейзеном и Г. Юри.

Тема 2. Стабильные и радиоактивные изотопы, радиоактивный распад

Закономерности распространения стабильных изотопов в природе, «долина стабильности». Принципиальные подходы к построению экспериментов со стабильными и радиоактивными изотопами. Понятие о радиоактивном распаде. Альфа и бета-распад. Гамма-излучение. Кинетика радиоактивного распада, использование радиоактивных изотопов для датировки осадочных пород, палеопочв и биологических объектов. Особенности экспериментов с радиоизотопами. Сцинтиграфия, FISH-микроавторадиография.

Тема 3. Аналитические методы определения изотопного состава вещества

Принципиальное устройство масс-спектрометра. Формы выражения изотопного состава, изотопные отношения и их определение, изотопные стандарты. Способы пересчета разных форм выражения изотопного состава, пересчеты величин, полученных относительно разных стандартов. Виды ионных источников масс-спектрометра: ионизация электронным ударом, химическая ионизация, ионизация в электроспрее, химическая ионизация при атмосферном давлении, ионизация в индуктивно-связанной плазме, термоионизация. Основное уравнение масс-спектрометра. Квадруполь и квадрупольная ионная ловушка. Времяпролетный масс-анализатор. Масс-спектрометры потока, хромато-масс-спектрометрия. непрерывного Использования абсорбционной инфракрасной спектроскопии ДЛЯ определения изотопного состава вешества. Микроаналитическая техника: SIMS и NanoSIMS.

Тема 4. Фракционирование изотопов и смешивание изотопов

Понятие об изотопном эффекте. Прочность химической связи с участием легкого и тяжелого изотопов. Термодинамический (равновесный) и кинетический изотопный эффект: количественный расчет и свойства. Уравнение масс-баланса. Модели фракционирования изотопов при обратимых и необратимых реакциях в открытых и закрытых системах. Смешивание изотопов. Изотопные эффекты в природе.

Раздел 2. Применение изотопных методов для решения исследовательских задач Тема 5. Геохимия стабильных изотопов биологически значимых элементов

Стабильные изотопы углерода. Изотопный состав ювенильного углерода, органического углерода и углерода карбонатов. Изотопный состав CO_2 и CH_4 атмосферы и их динамика. Фракционирование изотопов при фотосинтезе: механизм и особенности у разных растений. Отличия C3 и C4 фотосинтеза, использование этих отличий в почвенных и экологических исследованиях. Изотопный состав отдельных компонентов растительной биомассы. Изотопный состав микробной биомассы и почвенного CO_2 при разложении растительных остатков. Фракционирование изотопов при метаногенезе.

Стабильные изотопы азота. Фракционирование изотопов в биологическом цикле азота. Явление обратного фракционирования изотопов при нитрификации. Фракционирование изотопов азота в почвенном профиле. Фракционирование изотопов азота в трофических цепях, трофическое обогащение. Совместное использование изотопов азота и углерода для изучения трофических связей в экосистемах. Изотопный состав N_2O , NO_2 в атмосфере.

Стабильные изотопы серы. Фракционирование изотопов в биологическом цикле серы. Изотопный состав серосодержащих газов в атмосфере. Понятие о масс-независимом фракционировании, масс-независимое фракционирование изотопов серы.

Стабильные изотопы кислорода. Фракционирование изотопов кислорода при испарении и конденсации воды. Фракционирование изотопов кислорода в процессе фотосинтеза, изотопный состав кислорода нитратов и сульфатов. Масс-независимое фракционирование изотопов кислорода. Использование изотопов кислорода для уточнения источников азота и серы в экосистемах.

Стабильные изотопы водорода. Фракционирование изотопов водорода при испарении и конденсации воды. Изотопный состав атмосферного водорода и контролирующие его факторы. Использование изотопов кислорода и водорода для изучения географического происхождения органического вещества и путей миграции животных.

Перспективы использования в биологии, почвоведении и экологии изотопов лития, бора, магния, кремния, хлора, кальция, хрома, железа, меди, никеля и молибдена.

Тема 6. Изотопный состав биомаркеров, способы связать таксономическую принадлежность и функции микроорганизмов *in situ*

Метод включения изотопной метки в состав фосфолипидных жирных кислот (PLFA-SIP): достоинства и недостатки. Метод stable isotope switching для изучения и путей переработки субстрата в экосистеме. Изучение метаболизма и таксономической принадлежности некультивируемых организмов, исследование анаэробного окисления метана.

Метод включения изотопной метки в состав ДНК (DNA-SIP). Центрифугирование в градиенте плотности для разделения меченого и не меченого ДНК. Подходы к исследованию метило- и метанотрофных организмов, деструкторов органических поллютантов, микроорганизмов ризосферы. Использование изотопных меток в метагеномных исследованиях. Ограничения методов.

Анализ РНК и белков в экспериментах с изотопной меткой.

Тема 7. Использование изотопных данных в палеоэкологических и палеоклиматических реконструкциях

Развитие представлений о возрасте Земли и истории жизни на ней. Использование изотопного состава осадочных пород для доказательств существования жизни 3,45-3,85 млрд лет назад. Использование метода NanoSIMS для анализа микрофоссилий, изучение биохимического разнообразия жизни Архея и Протерозоя.

Реконструкция климата и состава атмосферы по изотопному составу осадочных пород. Использование следов масс-независимого фракционирования серы и изотопов хрома для датирования «кислородной революции». Гипотеза «Snowball Earth» и изотопные свидетельства планетарных оледенений в Протерозое. Изучение изменений климата в четвертичном периоде и, в частности, в голоцене на основании изотопного состава кернов из полярных ледников и донных морских отложений. Морские изотопные стадии. Изотопные методы оценки источников парниковых газов в атмосфере (деятельность почвенных микроорганизмов, сжигание ископаемого топлива и т.д.).

7. Фонд оценочных средств для оценивания результатов обучения по дисциплине:

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля:

Задача 1.

В накопительную культуры внесены нитраты, после чего в среде был обнаружен нитританион: $NO_3^- \to NO_2^-$

Для внесенных нитратов $\delta^{15}N = 0\%$, $^{15}N/^{14}N = 3,6764 \cdot 10^{-3}$. Изотопный состав нитритов в момент обнаружения оказался легче, $\delta^{15}N = -30\%$ и $^{15}N/^{14}N = 3,5661 \cdot 10^{-3}$. Рассчитайте для данного биохимического процесса α (согласно определению данной величины в химии), Δ , ϵ , [1000·ln α]. Сравните их с $\delta_{\text{продукт}}$ - $\delta_{\text{субстрат}}$.

Задача 2.

В эксперименте на поле в Швеции впервые была высажена кукуруза. $\delta^{13}C_{CO2}$, образуемого при дыхании растений кукурузы, составил -12‰. $\delta^{13}C_{CO2}$ для почвенного дыхания на контрольной делянке составил -24‰. В августе на опытном поле выделяющийся из почвы CO_2 имел $\delta^{13}C = -16$ ‰. Объясните это явление и дайте ему количественную оценку.

Задача 3.

Органическое вещество с δ^{13} C = -25‰ используется микрорганизмами в анаэробных условиях. Часть его перерабатывается бродильщиками в CO_2 (Δ = +12‰), а часть – в уксусную кислоту (для углерода метильной группы Δ = -25‰). CO_2 накапливается в растворенном виде в среде, тогда как концентрация уксусной кислоты в среде крайне низка.

Оба субстрата используются метаногенами, и для образующегося метана $\delta^{13}C = -58,8\%$. Известно, что при использовании CO_2 для метаногенеза $\Delta = -72\%$, а для использующих уксусную кислоту *Methanosarcina*, обнаруженных в местообитании, $\Delta = -25\%$. Оцените вклад каждого из двух субстратов в образовании метана.

7.2. Типовые контрольные вопросы, задания или иные материалы для проведения промежуточной аттестации:

- 1. История открытия изотопов и исследований изотопных эффектов.
- 2. Стабильные изотопы. «Долина стабильности».
- 3. Виды и кинетика радиоактивного распада.
- 4. Формы выражения и записи изотопного состава.
- 5. Изотопные стандарты.
- 6. Устройство и принцип работы масс-спектрометра.
- 7. Понятие об изотопных эффектах, причины их формирования.
- 8. Термодинамический (равновесный) изотопный эффект.
- 9. Кинетический изотопный эффект.
- 10. Фракционирование изотопов углерода при фотосинтезе.
- 11. Фракционирование изотопов углерода при деструкции органического вещества в аэробных и анаэробных условиях.
- 12. Фракционирование изотопов в биологическом цикле азота.
- 13. Фракционирование изотопов азота в трофических цепях
- 14. Фракционирование изотопов в почвенном профиле.
- 15. Фракционирование изотопов в биологическом цикле серы.
- 16. Масс-зависимое и масс-независимое фракционирование изотопов. Примеры использования в исследовательской работе.
- 17. Фракционирование изотопов водорода и кислорода при формировании атмосферных осадков.
- 18. Эксперименты по включению изотопной метки в состав биомаркеров. Достоинства и недостатки анализа липидов, ДНК, РНК, белков.
- 19. Подходы к изучению метаболизма некультивируемых организмов.
- Основные направления исследований, сочетающих изотопные и молекулярнобиологические методы.
- 21. FISH-микроавторадиография.
- 22. Микроаналитическая техника: SIMS и NanoSIMS.
- 23. Изотопный состав парниковых газов.
- 24. Реконструкция изменений климата с использованием изотопных данных.
- 25. Изотопные методы датирования. Радиоуглеродный анализ.

8. Шкала и критерии оценивания результатов обучения по дисциплине:

В таблице представлена шкала оценивания результатов обучения по дисциплине. Уровень знаний обучающегося оценивается на "отлично", "хорошо", "удовлетворительно", "неудовлетворительно".

Оценка "отлично" выставляется, если обучающийся демонстрирует сформированные систематические знания, умения и навыки их практического использования. Оценка "хорошо" ставится, если при демонстрации знаний, умений и навыков студент допускает отдельные неточности (пробелы, ошибочные действия) непринципиального характера. При несистематических знаниях, демонстрации отдельных (но принципиально значимых навыков) и затруднениях в демонстрации других навыков выставляется оценка

«удовлетворительно». Оценка "неудовлетворительно" ставится, если знания и умения фрагментарны, а навыки отсутствуют.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине							
Оценка		•					
РО и							
соответствующи	2	3	4	5			
е виды	2	3	4	3			
оценочных							
средств							
	незачёт		зачёт				
Знания	Отсутстви	Фрагментарные	Общие, но не	Сформированны			
(виды оценочных	е знаний	знания	структурированные	e			
средств: устные			знания	систематические			
и письменные				знания			
опросы и							
контрольные							
работы)							
Умения	Отсутстви	В целом	В целом успешное,	Успешное и			
(виды оценочных	е умений	успешное, но не	но содержащее	систематическое			
средств: устные		систематическо	отдельные пробелы	умение			
и письменные		е умение	умение (допускает				
опросы и			неточности				
контрольные			непринципиальног				
работы)			о характера)				
Навыки	Отсутстви	Наличие	В целом,	Сформированны			
(владения, опыт	е навыков	отдельных	сформированные	е навыки			
деятельности)	(владений,	навыков	навыки (владения),	(владения),			
(виды оценочных	опыта)	(наличие	но используемые	применяемые			
средств: устные		фрагментарного	не в активной	при решении			
и письменные		опыта)	форме	задач			
опросы и							
контрольные							
работы)							

9. Ресурсное обеспечение:

- Перечень основной и дополнительной учебной литературы Основная литература:
 - *Fry B.* Stable Isotope Ecology. New York: Springer. 2006. Свободный доступ онлайн: https://link.springer.com/book/10.1007/0-387-33745-8
 - *Hoefs J.* Stable Isotope Geochemistry (7th edition). Cham Heidelberg New York Dordrecht London: Springer. 2015.
 - Isotopic Analysis: Fundamentals and Applications Using ICP-MS (ed. F. Vanhaecke, P. Degryse). Wiley-VCH Verlag & Co. KGaA,Boschstr. Weinheim, Germany, 2012 DOI:10.1002/9783527650484
 - Stable Isotopes in Ecology and Environmental Science (ed. R. Michener, K. Lajtha).
 Malden Oxford Carlton: Blackwell Publishing. 2007. Свободный доступ онлайн:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.3198&rep=rep1&type=pdf

Дополнительная литература:

- Галимов Э.М. Природа биологического фракционирования изотопов. М.: Наука. 1981.
- *Галимов Э.М.* Геохимия стабильных изотопов углерода. М.: Недра. 1968. Свободный доступ онлайн: https://www.geokniga.org/books/11240
- Гриненко В.А., Гриненко Л.Н. Геохимия изотопов серы. М.: Наука. 1974.
- *Conrad R., Noll M., Claus P. et al.* Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments // Biogeosciences, 2011, 8, pp. 795–814. https://doi.org/10.5194/bg-8-795-2011
- *Michalski G., Kolanowski M., Riha K.M.* Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts // Isotopes in Environmental and Health Studies, 2015, Vol. 51, Iss. 3. p. 382-391. DOI: 10.1080/10256016.2015.1054821
- *Hundey E., Russell S., Longstaffe F. et al.* Agriculture causes nitrate fertilization of remote alpine lakes // Nature Communications, 2016, 7, 10571. https://doi.org/10.1038/ncomms10571
- Перечень лицензионного программного обеспечения
- Перечень профессиональных баз данных и информационных справочных систем
- Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости)
- Описание материально-технической базы

А. Помещения:

- аудитория, рассчитанная на стандартную группу учащихся (10-15 человек);
- аудитория с выходом в Интернет для самостоятельной работы.

Б. Оборудование:

• мультимедийный проектор, компьютер, экран для учебной аудитории.

10. Язык преподавания: русский

11. Преподаватель (преподаватели):

Поздняков Лев Анатольевич доцент кафедры биологии почв, к.б.н. (2011, Д 501.002.13)

12. Разработчики программы:

Поздняков Лев Анатольевич доцент кафедры биологии почв, к.б.н. (2011, Д 501.002.13)

13. Краткая аннотация дисциплины:

Курс формирует представление о возможностях изотопных методов в почвенноэкологических исследованиях. Дается понятийная база и математический аппарат, рассказывается о механизмах фракционирования изотопов, моделировании изменения изотопного состава в открытых и закрытых системах. Полученные знания закрепляются при решении задач, основанных на результатах реальных исследований. Анализируется история изучения масс-зависимого и масс-независимого фракционирования изотопов, усовершенствования аналитических методов и приборной базы, указываются перспективы их дальнейшего развития. Подробно рассматривается геохимия стабильных изотопов биологически значимых элементов: углерода, азота, серы, кислорода, водорода и др. Дается представление о том, какие процессы приводят к изменению изотопного состава вещества, и какая может быть получена информация из его анализа. Рассказывается об использовании меченых субстратов в почвенно-экологических исследованиях, особое внимание уделяется методам PLFA-SIP и DNA-SIP, позволяющим напрямую связать определенный биохимический процесс с проводящей его группой микроорганизмов. Рассмотрены вопросы применения изотопных методов для изучения вклада почвенной микробиоты в процессы образования и поглощения парниковых газов; для изучения изменений климата, эволюции биосферы, а также для целей датирования палеопочвоведении и геологии.